Optimal Sorting Circuits for Short Keys

Wei-Kai Lin

and Elaine Shi (Carnegie Mellon university)

Carnegie Mellon
University

Sorting, parameters: n, k, w

n elements

Input

 Sort

Output (0) (0) (1) (2)(3)4

- Known as "integer sorting" [AHNR95][Han02][HT02]
- Payload must be moved as well
- Stability is not required

Input (2) (4) (0) (4) (3) (0) (2) (1)

Circuit

- Input \& output: $n \cdot(k+w)$ bits
- Const fan-in and fan-out gates (AND, OR, NOT)
- Efficiency metric (goal):

Why small size (number of gates) small depth (length from input to output)

0

Random-Access Machine model (RAM)

- Textbook counting sort and radix sort: $O(n \cdot k)$
- Sort n integers, nearly linear time (e.g. $O(n \cdot \sqrt{\log \log n})$
[Kirkpatrick-Reisch81][Andersson-Hagerup-Nilsson-Raman95] [Han-Thorup02] [Thorup02] [Han04] [Belazzougui-Brodal-Nielsen14]
(word size > log n bits)
- Techniques: counting / hashing based \rightarrow need random accesses

Circuit is fixed
\rightarrow more challenging

Random access: read / write memory word depend on input data

Sorting circuits imply *super* efficient algorithms

- Offline oblivious RAM [Boyle-Naor16]
- Function inversion / static non-adaptive data structures [Hellman80] [Corrigan-Gibbs\&Kogan19] [Dvořák-Koucký-Král-Slívová21]
- Network coding conjecture [Ahlswede-Cai-Li-Yeung00] [Li-Lio4]
[Adler-Harvey-Jain-Kleinberg-Lehman06] [Afshani-Freksen-Kamma-Larsen19] [Asharov-Lin-Shi21]
Sorting circuit is "not easier" to construct
Lower bound for XXX is
"not easier than lower bound for sorting circuits"
(barrier for lower bound)

Question:

Best sorting in circuit size and depth?

Comparison-based "sorting networks":

- Bitonic sort [Batcher68] size $O\left((k+w) \cdot n \log ^{2} n\right)$, depth $O\left(\log ^{2} n\right)$ (practical)

- AKS [Ajtai-Komlos-Szemeredi83] [Patterson90] [Seiferas09] [Goodrich14] size $O((k+w) \cdot n \log n)$, depth $O(\log n)$
- Comparison-based:
- $(k+w) \cdot n \log n$ is necessary
- even when $k=1$ (zero-one principle [Knuth98])
- "Indivisible" payloads:
- $(k+w) \cdot n \cdot k$ is necessary
- If stable (order preserving), $n \log n$ even when $k=1$ [Lin-Shi-Xie19]

Non-comparison-based, indivisible payload, not stable:

- [Pippenger96], "self-routing superconcentrator" size $O((k+w) \cdot n+n \cdot \log n)$, depth $O\left(\log ^{2} n\right)$
- [Leighton-Ma-Suel95] [Mitchell-Zimmerman14] [Lin-Shi-Xie19] (randomized)
[Asharov-Komargodski-Lin-Nayak-Peserico-Shi20] [Dittmer-Ostrovsky20] size $O((k+w) \cdot n \cdot k \cdot \log \log n)$, depth poly $\log n$
- [Asharov-Lin-Shi21]
size $O\left((k+w) \cdot n \cdot k \cdot \operatorname{poly}\left(\log ^{*} n-\log ^{*}(k+w)\right)\right)$, depth $>$ poly $\log n$

All poly $\log n$ depth

- [Koucký-Král21, concurrent]
size $O\left((k+w) \cdot n \cdot k \cdot\left(\log ^{*} n-\log ^{*}(k+w)\right)\right.$, depth $O\left(\log ^{3} n\right)$

Previous "small" sorting circuits

\rightarrow All poly $\log n$ depth

Lower bound is $\log n$ [Cook-Dwork-Reischuk86]

AKS is $0(\log n)$ depth

Some implication
need log depth
[Corrigan-Gibbs\&Kogan19]
[Dvořák-Koucky-Král-Slívová21]

Main question:

Small size ($\ll n \log n$) and log depth?

Main Theorem:

Sort n elements, each consists of k-bit key and w-bit payload, in circuit size $O\left((k+w) \cdot n \cdot k \cdot \operatorname{poly}\left(\log ^{*} n-\log ^{*}(k+w)\right)\right)$, depth $O(\log n+\log w)$

Non-comparison, "indivisible" payload, not stable

$$
\text { Size }=O((k+w) \cdot n \cdot k) \text { for any }(k+w)>\log ^{(100)} n \quad[\text { optimal] }
$$

Intermediate result, Deterministic Oblivious Parallel RAM:
Sort n elements, each consists of k-bit key and w-bit payload, in total work $O(n \cdot k)$, parallel time $O(\log n)$ [optimal]

Application: To hide data from adversary that "observe accesses"
E.g. oblivious sorting is essential for oblivious RAM (ORAM) algorithms [GO96] [Ajtai10] [DMN1] [GM11] [KLO12] [CGLS17] [PPRY18] [AKLNPS20] [DO20] ...

Main Theorem:

Sort n elements, each consists of k-bit key and w-bit payload, in circuit size $O\left((k+w) \cdot n \cdot k \cdot p o l y\left(\log ^{*} n-\log ^{*}(k+w)\right)\right)$, depth $O(\log n+\log w)$

Challenges

Achieve $\log n$ depth circuit for $k=1$:

- All previous \& concurrent results takes depth poly $\log n$ [Pippenger96] [Asharov-Lin-Shi21] [Koucký-Král21] Based on Pippenger's "self-routing superconcentrator"
- Need depth $O(\log n)$

Novel 1-bit to k-bit upgrade:

- 1-bit is not stable \rightarrow "radix sort" not work
- "Quick sort" approach (using median) \rightarrow poly log factors [Lin-Shi-Xie19] [Asharov-Lin-Shi21] [Koucký-Král21]
- Need "additive" depth

Radix sort?

n elements, k-bit keys

Quicksort?

- Permute elements into p equal-size segments
- Elements are ordered between any two segments except for $1 / p$ fraction

Output

Construction? Want: Size $\sim n \cdot k$, depth $\sim \boldsymbol{\operatorname { l o g }} \boldsymbol{n}$

Totally sorted p segments

Element in correct seg, but wrong position? Sorting every seg is too expensive

- 2^{k} distinct keys in $2^{3 k}$ segments
\Rightarrow Almost all seg consist identical keys when totally sorted ©
- 2^{k} (out of $2^{3 k}$) seg "mixed" \rightarrow wrong position $(3$
$\Rightarrow \Rightarrow$ At most $n / 2^{2 k}$ wrong position

Construct p-Segmenter
Revisit AKS sorting (log depth, parallel)

Input

Construction of Segmenter: First k "cycles" of AKS sorting
$\Rightarrow 2^{k}$-segmenter

Output • 2^{k} equal-sized segments

- Ordered elements except for $1 / 2^{k}$ fraction
2^{k}-segmenter (comparator network), taking size $O(n \cdot k)$, depth $O(k)$ ("wrapping lemma" of [AKS83])

Input: n elements, $n /$ poly $\log n$ marked 00000000

Sparse

- Depth: $O(\log n)$

$$
+
$$

"Repeated bootstrapping"
[Asharov-Lin-Shi21]

- polylogn-degree expander graph (const degree in Pippenger)
- Size: $O(n)$

Building block
[Pippenger96]
[Ash-Kom-Lin-Pes-Shi20]

Improved construct:

Epilogue: Reducing poly $\log ^{*}$ to $\log ^{*}$

This work:
size $O\left((k+w) \cdot n \cdot k \cdot p o l y\left(\log ^{*} n-\log ^{*}(k+w)\right)\right)$, depth $O(\log n)$

```
[Koucký-Král21, concurrent]
size \(O\left((k+w) \cdot n \cdot k \cdot\left(\log ^{*} n-\log ^{*}(k+w)\right)\right)\), depth \(O\left(\log ^{3} n\right)\)
```

> Better "repeated bootstrapping" technique

Putting together:
Sort n elements, k-bit key and w-bit payload, circuit size $O\left((k+w) \cdot n \cdot k \cdot\left(\log ^{*} n-\log ^{*}(k+w)\right)\right)$, depth $O(\log n)$

Conclusion and Open Problems

```
This talk:
Sort n elements, k-bit key and w-bit payload,
circuit size O((k+w)\cdotn\cdotk\cdot(\mp@subsup{\operatorname{log}}{}{*}n-\mp@subsup{\operatorname{log}}{}{*}(k+w))), depth O(\operatorname{log}n)
```

Open problems:

- Get rid of log*? (better recursion?)
- Get rid of k ? (beyond "indivisible"?)
- Conditional lower bounds?
- Improve segmenter / AKS cycles?

