
Optimal Sorting Circuits for
Short Keys

Wei-Kai Lin
and Elaine Shi (Carnegie Mellon university)

Sorting, parameters: 𝑛, 𝑘, 𝑤

2 4 0 4 3 0 2 1

2 40 430 21

Sort

Input

Output

𝑛 elements

• Known as “integer sorting” [AHNR95][Han02][HT02]

• Payload must be moved as well
• Stability is not required

𝑘-bit key
𝑤-bit payload

2 4 0 4 3 0 2 1

2 40 430 21

Input

Output

𝑘-bit key

𝑤-bit payload

Circuit
• Input & output: 𝑛 ⋅ 𝑘 + 𝑤 bits
• Const fan-in and fan-out gates (AND, OR, NOT)
• Efficiency metric (goal):

small size (number of gates)
small depth (length from input to output)

Why

circuit?

Random-Access Machine model (RAM)
• Textbook counting sort and radix sort: 𝑂(𝑛 ⋅ 𝑘)

• Sort 𝑛 integers, nearly linear time (e.g. 𝑂 𝑛 ⋅ log log 𝑛
[Kirkpatrick-Reisch81][Andersson-Hagerup-Nilsson-Raman95] [Han-Thorup02] [Thorup02] [Han04]
[Belazzougui-Brodal-Nielsen14]
(word size > log n bits)

• Techniques: counting / hashing based ➔ need random accesses

Circuit is fixed
➔more challenging

Random access: read / write memory word
depend on input data

Sorting circuits imply *super* efficient algorithms
• Offline oblivious RAM [Boyle-Naor16]

• Function inversion / static non-adaptive data structures
[Hellman80] [Corrigan-Gibbs&Kogan19] [Dvořák-Koucký-Král-Slívová21]

• Network coding conjecture [Ahlswede-Cai-Li-Yeung00] [Li-Li04]

[Adler-Harvey-Jain-Kleinberg-Lehman06] [Afshani-Freksen-Kamma-Larsen19] [Asharov-Lin-Shi21]

Question:
Best sorting in circuit size and depth?

Sorting circuit is “not easier” to construct

Lower bound for XXX is
“not easier than lower bound for sorting circuits”

(barrier for lower bound)

Implication

Previous sorting circuits

Comparison-based “sorting networks”:
• Bitonic sort [Batcher68]

size 𝑂 𝑘 + 𝑤 ⋅ 𝑛 log2 𝑛 , depth 𝑂 log2 𝑛 (practical)

• AKS [Ajtai-Komlos-Szemeredi83] [Patterson90] [Seiferas09] [Goodrich14]

size 𝑂 𝑘 + 𝑤 ⋅ 𝑛 log 𝑛 , depth 𝑂 log 𝑛

• Comparison-based:
• 𝑘 + 𝑤 ⋅ 𝑛 log 𝑛 is necessary
• even when 𝑘 = 1

(zero-one principle [Knuth98])

• “Indivisible” payloads:
• 𝑘 + 𝑤 ⋅ 𝑛 ⋅ 𝑘 is necessary
• If stable (order preserving),
𝑛 log 𝑛 even when 𝑘 = 1
[Lin-Shi-Xie19]

<“Comparator”

Previous sorting circuits

Non-comparison-based, indivisible payload, not stable:
• [Pippenger96], “self-routing superconcentrator”

size 𝑂 𝑘 + 𝑤 ⋅ 𝑛 + 𝑛 ⋅ log 𝑛 , depth 𝑂 log2 𝑛
• [Leighton-Ma-Suel95] [Mitchell-Zimmerman14] [Lin-Shi-Xie19] (randomized)

[Asharov-Komargodski-Lin-Nayak-Peserico-Shi20] [Dittmer-Ostrovsky20]

size 𝑂 𝑘 + 𝑤 ⋅ 𝑛 ⋅ 𝑘 ⋅ log log 𝑛 , depth 𝑝𝑜𝑙𝑦 log 𝑛

• [Asharov-Lin-Shi21]

size 𝑂 𝑘 + 𝑤 ⋅ 𝑛 ⋅ 𝑘 ⋅ 𝑝𝑜𝑙𝑦(log∗ 𝑛 − log∗(𝑘 + 𝑤)) , depth > 𝑝𝑜𝑙𝑦 log 𝑛

• [Koucký-Král21, concurrent]

size 𝑂 𝑘 + 𝑤 ⋅ 𝑛 ⋅ 𝑘 ⋅ (log∗ 𝑛 − log∗(𝑘 + 𝑤) , depth 𝑂 log3 𝑛

All 𝑝𝑜𝑙𝑦 log 𝑛 depth

Previous “small” sorting circuits

Main question:
Small size (<< n log n) and log depth?

AKS is O(log 𝑛) depth

Some implication

need log depth
[Corrigan-Gibbs&Kogan19]

[Dvořák-Koucký-Král-Slívová21]

➔ All 𝑝𝑜𝑙𝑦 log 𝑛 depth

Lower bound is log 𝑛 [Cook-Dwork-Reischuk86]

Main Theorem:
Sort 𝑛 elements, each consists of 𝑘-bit key and 𝑤-bit payload, in circuit

size 𝑂 𝑘 + 𝑤 ⋅ 𝑛 ⋅ 𝑘 ⋅ 𝑝𝑜𝑙𝑦(log∗ 𝑛 − log∗(𝑘 + 𝑤)) , depth 𝑂 log 𝑛 + log𝑤

Non-comparison, “indivisible” payload, not stable

Size = 𝑂 𝑘 + 𝑤 ⋅ 𝑛 ⋅ 𝑘 for any 𝑘 + 𝑤 > log(100) 𝑛 [optimal]

Intermediate result, Deterministic Oblivious Parallel RAM:
Sort 𝑛 elements, each consists of 𝑘-bit key and 𝑤-bit payload, in
total work 𝑂(𝑛 ⋅ 𝑘), parallel time 𝑂 log 𝑛 [optimal]

Application: To hide data from adversary that “observe accesses”
E.g. oblivious sorting is essential for oblivious RAM (ORAM) algorithms
[GO96] [Ajtai10] [DMN1] [GM11] [KLO12] [CGLS17] [PPRY18] [AKLNPS20] [DO20] …

Main Theorem:
Sort 𝑛 elements, each consists of 𝑘-bit key and 𝑤-bit payload, in circuit

size 𝑂 𝑘 + 𝑤 ⋅ 𝑛 ⋅ 𝑘 ⋅ 𝑝𝑜𝑙𝑦(log∗ 𝑛 − log∗(𝑘 + 𝑤)) , depth 𝑂 log 𝑛 + log𝑤

Achieve log 𝑛 depth circuit for 𝑘 = 1:
• All previous & concurrent results takes depth 𝑝𝑜𝑙𝑦 log 𝑛

[Pippenger96] [Asharov-Lin-Shi21] [Koucký-Král21]

Based on Pippenger’s “self-routing superconcentrator”

• Need depth 𝑂 log 𝑛

Novel 1-bit to 𝑘-bit upgrade:
• 1-bit is not stable ➔ “radix sort” not work
• “Quick sort” approach (using median) ➔ poly log factors

[Lin-Shi-Xie19] [Asharov-Lin-Shi21] [Koucký-Král21]

• Need “additive” depth

Challenges

1-bit to 𝑘-bit upgrade Previous approaches

Radix sort?

𝑛 elements, 𝑘-bit keys

1-bit sorter (least significant bit)

1-bit sorter (2nd least significant bit)

⋮

output
Need stable

If stable and indivisible,
𝑛 log 𝑛 is necessary

[Lin-Shi-Xie19]

Quicksort?

𝑛 elements, 𝑘-bit keys

Find median, then 1-bit sorter

𝑛/2 elem, smaller 𝑛/2 elem, greater

Median + 1-bit sort Median + 1-bit sort

𝑛/4 𝑛/4 𝑛/4 𝑛/4

⋮

Depth of
median?

Total depth =
poly log

1-bit to 𝑘-bit upgrade Our new abstraction: 𝑝-Segmenter

Input

Output

2 4 0 4 3 0 2 1

𝑝-Segmenter:
• Permute elements into 𝑝 equal-size segments
• Elements are ordered between any two segments

except for 1/𝑝 fraction

2 40 4 3 02 1

2 40 430 21Totally sorted
𝑝 segments

Construction? Want:
Size ~𝑛 ⋅ 𝑘, depth ~ 𝒍𝒐𝒈𝒏

Sets diff by
1/𝑝 fraction

Sets diff by
1/𝑝 fraction

1-bit to 𝑘-bit upgrade

23𝑘-segmenter

𝑛 elements, 𝑘-bit key (2𝑘 distinct keys)

Segmenter “errors”
1. Wrong segment

2. Correct segment, wrong position

1/23𝑘

wrong seg…

Element in correct seg, but wrong position? Sorting every seg is too expensive
• 2𝑘 distinct keys in 23𝑘 segments
➔ Almost all seg consist identical keys when totally sorted☺

• 2𝑘 (out of 23𝑘) seg “mixed” ➔ wrong position
➔➔ At most 𝑛/22𝑘 wrong position

𝑛/23𝑘 elements in wrong seg

23𝑘

segments

1-bit to 𝑘-bit upgrade

23𝑘-segmenter

𝑛 elements, 2𝑘 distinct keys

Segmenter + 1-bit sorting

…

Identify “almost uniform” seg
(get 1/22𝑘 “wrong-seg elem” and
“mixed seg”)

Sort
(using 2𝑘 instances of 1-bit sorting)

Move “wrong elements” to a short array
(i.e., 1-bit sorting)

~𝑛/22𝑘 elem

Output sorted elementsMove short array to segments

Construct 𝑝-Segmenter Revisit AKS sorting (log depth, parallel)

Input

Output

Cycle 1

Cycle 2

⋮

• log 𝑛 “cycles”
Each cycle:
• Comparators
• Size 𝑂(𝑛), const depth

• Cycles diff in construction
• Each cycle “refine” outcome

of previous cycle into “more
sorted”

Cycle log 𝑛

Defined w.r.t. construction of each cycle
[AKS83, main lemma]

(skip here)

Construct 𝑝-Segmenter Revisit AKS sorting (log depth, parallel)

Input

Output

Cycle 1

Cycle 2

⋮

• log 𝑛 “cycles”
Each cycle:
• Comparators
• Size 𝑂(𝑛), const depth

Wanted in “Segmenter”

• Cycles diff in construction
• Each cycle “refine” outcome

of previous cycle into “more
sorted”

Construct 𝑝-Segmenter Segmenter based on AKS

Input

Output

Cycle 1

Cycle 2

AKS sorting:
➔ log 𝑛 cycles
➔ Cycles diff in construction
➔ Each cycle “refine” outcome of
previous cycle into “more sorted”

Output is
“Segmenter”

Construct 𝑝-Segmenter

Input

Output

Construction of Segmenter:
First 𝑘 “cycles” of AKS sorting

➔ 2𝑘-segmenter

• 2𝑘 equal-sized segments
• Ordered elements except for 1/2𝑘 fraction

2𝑘-segmenter (comparator network), taking size 𝑂 𝑛 ⋅ 𝑘 , depth 𝑂 𝑘
(“wrapping lemma” of [AKS83])

1-Bit sorting in log 𝑛 depth circuit

1-bit sorting
(aka tight compaction) Loose compaction

X X

Input: 𝑛 elements, < 1% marked

Output: 𝑛/2 elements,
include all marked input

Building block
[Pippenger96] [Ash-Kom-Lin-Nay-
Pes-Shi20] [Asharov-Lin-Shi21]

Loose compaction

𝑛 elements

“Approx sort”

𝑛/2 elements

“Approx sort”

Loose compaction

⋯ (recurse)

Previous approaches

Depth of loose compact = log 𝑛
➔ Total depth = poly log

1-Bit sorting in log 𝑛 depth circuit

1-bit sorting
(aka tight compaction) Sparse

Loose compaction

X X

Input: 𝑛 elements,
𝑛/𝑝𝑜𝑙𝑦 log 𝑛 marked

Output: 𝑛/ log 𝑛 elements,
include all marked input

Low depth
“sparse” loose compaction

Building block
[Pippenger96]
[Ash-Kom-Lin-Pes-Shi20]

Improved construct:
• 𝑝𝑜𝑙𝑦 log 𝑛-degree

expander graph
(const degree in Pippenger)

• Size: 𝑂(𝑛)
• Depth: 𝑂 log 𝑛

Previous:
Apply several

loose compact…
➔ Depth > log 𝑛

+

“Repeated bootstrapping”
[Asharov-Lin-Shi21]

[Koucký-Král21, concurrent]

size 𝑂 𝑘 + 𝑤 ⋅ 𝑛 ⋅ 𝑘 ⋅ (log∗ 𝑛 − log∗(𝑘 + 𝑤)) , depth 𝑂 log3 𝑛

This work:

size 𝑂 𝑘 + 𝑤 ⋅ 𝑛 ⋅ 𝑘 ⋅ 𝑝𝑜𝑙𝑦(log∗ 𝑛 − log∗(𝑘 + 𝑤)) , depth 𝑂 log 𝑛

Epilogue: Reducing poly log∗ to log∗

Better “repeated bootstrapping” technique

Putting together:
Sort n elements, 𝑘-bit key and 𝑤-bit payload,

circuit size 𝑂 𝑘 + 𝑤 ⋅ 𝑛 ⋅ 𝑘 ⋅ (log∗ 𝑛 − log∗(𝑘 + 𝑤)) , depth 𝑂 log 𝑛

Conclusion and Open Problems

Open problems:
• Get rid of log*? (better recursion?)
• Get rid of 𝑘? (beyond “indivisible”?)
• Conditional lower bounds?
• Improve segmenter / AKS cycles?

This talk:
Sort n elements, 𝑘-bit key and 𝑤-bit payload,

circuit size 𝑂 𝑘 + 𝑤 ⋅ 𝑛 ⋅ 𝑘 ⋅ (log∗ 𝑛 − log∗(𝑘 + 𝑤)) , depth 𝑂 log 𝑛

Thank you!

	Slide 1: Optimal Sorting Circuits for Short Keys
	Slide 2: Sorting, parameters: n ,, k ,, w
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Conclusion and Open Problems

